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THE AERODYNAMICS OF HOVERING
INSECT FLIGHT.
II. MORPHOLOGICAL PARAMETERS

By C. P. ELLINGTON
Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.

(Communicated by Sir James Lighthill, F.R.S. — Received 28 March 1983)
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Morphological parameters are presented for a variety of insects that have been filmed
in free flight. The nature of the parameters is such that they can be divided into two
distinct groups: gross parameters and shape parameters. The gross parameters
provide a very crude, first-order description of the morphology of a flying animal:
its mass, body length, wing length, wing area and wing mass. Another gross parameter
of the wings is their virtual mass, or added mass, which is the mass of air accelerated
and decelerated together with the wing at either end of the wingbeat. The wing motion
during these accelerations is almost perpendicular to the wing surface, and the virtual
mass is approximately given by the mass of air contained in an imaginary cylinder
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18 C.P.ELLINGTON

around the wing with the chord as its diameter. The virtual mass ranges from 0.3
to 1.3 times the actual wing mass, indicating that the total mass accelerated by the
flight muscles can be more than twice the wing mass itself.

Over the limited size range of insects in this study, the interspecific variation of
non-dimensional forms of the gross parameters is much greater than any systematic
allometric variation, and no interspecific correlations can be found. The new shape
parameters provide quite a surprise, however: intraspecific coefficients of variation
are very low, often only 19,, and interspecific allometric relations are extremely
strong.

Mechanical aspects offlight depend not only on the magnitude of gross morphological
quantities, but also on their distributions. Non-dimensional radii are derived from
the non-dimensional moments of the distributions; for example, the first radius of wing
mass about the wing base gives the position of the centre of mass, and the second radius
corresponds to the radius of gyration. The radii are called ‘shape parameters’ since
they are functions only of the normalized shape of the distributions, and they provide
a second-order description of the animal morphology. The various radii of wing area
are strongly correlated, as are those of wing mass and of virtual mass: the higher radii
for each quantity can all be expressed by allometric functions of the first radius. The
overall shape of the distribution of a quantity can therefore be characterized by a
single parameter, the position of the centroid of that quantity.

The strong relations between the radii of wing area, mass and virtual mass hold
for a diverse collection of insects, birds and bats. Thus flying animals adhere to ‘laws
of shape’ regardless of biological differences. Aerodynamic and mechanical
considerations are most likely to provide an understanding of these laws of shape, but
an explanation has proved elusive so far.

The detailed shape of a distribution can be reconstructed from the shape parameters
by matching the moments of the observed distribution to those of a suitable analytical
function. A Beta distribution is compared with the distribution of wing area, i.e. the
shape of the wing, and a very good fit is found. With use of the laws of shape relating
the higher radii to the first radius, the Beta distribution can be reduced to a function
ofonly one parameter, thus providing a powerful tool for drawing a close approximation
to the entire shape of a wing given only its centroid of area. Quite unexpectedly, the
continuous spectrum of wing shapes can then be described in detail by a single
parameter of shape.

1. INTRODUCTION

The morphological and kinematic variety of the insects makes them an ideal subject for a
comparative analysis of hovering flight. Indeed, examples of the three groups of hovering
animals discussed in paper I are readily collected from most gardens, and this study is based
on such ‘common or garden’ species. The Diptera and Hymenoptera are especially proficient
at hovering and, therefore, receive the greatest attention. Although the Odonata provide a
superb example of hovering with an inclined stroke plane, they are being investigated elsewhere
(D. Newman, personal communication) and have been omitted here.

Accurate morphological data are a necessary foundation for any aerodynamic study, and the
data presented here ate primarily intended for use in the mechanical analyses of paper VI.
Morphological parameters were measured immediately after the insects had been filmed in free
flight; the filming is described in paper III. A few parameters could not be determined on the
fresh insects because of time limitations, and so were taken from other specimens of the same
species. For comparative purposes the parameters are generally reduced to non-dimensional
forms, which prove remarkably constant for each species.
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MORPHOLOGICAL PARAMETERS FOR FLYING INSECTS 19

Weis-Fogh (1973) separated the quasi-steady aerodynamic integrals for hovering flight into
morphological and kinematic parameters, showing that the aerodynamic force and profile
power are proportional to the second and third moments of the wing area, respectively. His
approach is extended in this paper, and a new set of parameters characterizing the wing shape
and mass distribution is derived from the moments of area, mass and virtual mass of the wings.
In paper VI many integral expressions of physical quantities can then be reduced to forms
proportional to the moment parameters.

2. MATERIALS AND METHODS

The choice of insects was usually quite arbitrary within the framework of selecting ones
proficient at slow or hovering flight in the field. As will be seen in paper III, however, this
did not guarantee a good flight performance under laboratory conditions. The seven-spot
ladybird Coccinella 7-punctata (Coccinellidae) is readily available and was chosen as a token
coleopteran, which are generally slow steady fliers without much manoeuvring capability.
Dipteran flight seems more interesting and varied, and the selection here is somewhat more
deliberate: crane-flies Tipula obsoleta and T. paludosa (Tipulidae), representing the primitive
suborder Nematocera; the hover-fly Episyrphus balteatus (Syrphidae, Syrphinae); and the
drone-fly Eristalis tenax (Syrphidae, Milesiinae). The last two insects belong to the large family
Syrphidae, which are collectively called ‘hover-flies’. Wing venation is reduced in this family,
as with all of the more advanced Diptera, and the wing has a ‘false margin’ of cross veins along
the trailing edge. Members of the subfamily Syrphinae usually hover with an inclined stroke
plane, and Weis-Fogh (1973) called these the ‘true’ hover-flies. Flies of the other subfamily
Milesiinae tend to be bulkier, with higher wing loadings, and, to judge from Eristalis and
Volucella, prefer to hover with a horizontal stroke plane although they are often seen using an
inclined one. Even if this functional difference between the subfamilies is more generally valid,
it is hardly fair to label the Syrphinae as ‘true’ hover-flies, implying that the Milesiinae are
‘false’ — they are equally superb fliers.

The Hymenoptera must be represented in any study of hovering flight, and common species
of the large superfamily Apoidea have been included: the honey bee Apis mellifera, various
species of the bumble bee Bombus, and the cuckoo bee Psithyrus vestalis, which parasitizes bumble
bees and is very similar to them in morphology. Within the Lepidoptera, many of the moths
are proficient slow fliers. Weis-Fogh (1973) had already filmed the large hawk moth Manduca
sexta (Sphingidae), and so two small moths were chosen for contrast. One of these, the common
plume moth Emmelina monodactylus (Pterophoridae), also complemented R. A. Norberg’s
(1972 a) multiple-exposure photographic study of two other plume moths. The other example
was Ephestia kuehniella, a member of the large family of small moths Pyralidae. The filming of
this insect was unsuccessful, as described in paper III, so morphological data were not taken.
Finally a specimen was chosen from the Neuroptera, an ancient order with uncoupled flimsy
wings with a delicate network of veins. The green lacewing Chrysopa carnea (Chrysopidae) is
the best known British member of the order, and is generally considered to be a ‘weak’ flier.
Another neuropteran had been filmed previously by Weis-Fogh (unpublished): Pterocroce
capillaris of the family Nemopteridae, which are recognized by long ribbon-like hindwings that
trail behind passively in flight.

The insects were collected locally in the mornings, and used in experiments upon return to
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20 C.P.ELLINGTON

the laboratory. They were anaesthetized with CO, after filming, and the total mass m was
measured to an accuracy of +0.1 mg on an electrobalance. Specimens were identified later
by Mr D. M. Unwin. The high-speed films and morphological notes of Weis-Fogh were
available to me, and his data for Manduca and Pterocroce (collected in the Atlas Mountains of
Morocco by Mr R. Northfield) were considered in this study. The morphological parameters
presented in this paper for Manduca were measured from specimens reared in the Departmental
Field Station on a semi-synthetic diet (Hoffman et al. 1966).

Coccinella T-punctata (LBO4) Apis mellifera (HBO1)

Tipula obsoleta (CF02) Bombus hortorum (BB04)

0

Episyrphus balteatus (HFO8)  Chrysopa carnea FW (LWOL1)

Eristalis tenax (DFO1) Chrysopa carnea HW (LWO1)

Manduca sexta (HMO2)

Figure 1. Planforms, or wing outlines, of some of the insects used in this study. Only the hindwing is shown for
Coccinella; the forewing (FW) and hindwing (HW) are given separately for Chrysopa, and are coupled
together for Apis, Bombus and Manduca. Identification codes for the insects are enclosed in parentheses
and explained in the text.

2.1. Wing planform

The planform, or outline, of the wing proves to be a dominant factor in the aerodynamic
analysis of hovering flight (paper VI), and examples are shown in figure 1. Detailed
measurements of the planform were made as follows. Immediately after weighing the insects,
the right wing, or wing pair, was cut from the body and weighed to +1 pg; the other wing
was left attached to aid identification. The severed wing was placed between two glass slides
and mounted in an enlarger. With use of the wing as a negative, prints were made at about
x 13 magnification. A grid negative was also printed to determine magnification and to check
distortions in the photographic process, which always proved negligible. The basal hinge line
was drawn on each print, and the wing base was arbitrarily defined as the point on that line
one-third of the distance from the leading edge to the trailing edge (figure 2a). The line
connecting the wing base and the wing tip is called the longitudinal wing axis. The wing length
R was measured between these two points to an accuracy of better than +0.59,: the error
was primarily due to difficulty in defining the hinge line on the prints.
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Coordinates of the wing outline were then determined at intervals of 0.02 R on the prints
by using the digitizer described in paper III. Fifty values of the chord ¢, the distance between
the leading and trailing edges, were thus obtained along the wing length. The small but
dense fringe of hairs around the neuropteran wings (Pterocroce and Chrysopa) should slightly
increase the aerodynamically effective wing area: the leading and trailing edges were arbitrarily
taken along the middle of the fringes for these wings. Prints of the forewing and hindwing of
Manduca were overlapped to provide a wing outline corresponding to that observed during

flight.
(a) é

(b)
z ¥4
1 d
X
° — —T—
N— J__L
X, —_I Qa; <l

y

__wing base axis
_centre of mass
_ radius of gyration

> X

FiGure 2. (a) Definitions of body length L, wing length R, and chord ¢, are illustrated. The longitudinal wing
axis and hinge line are drawn for the severed wing. () The coordinate system and parameters used in the
graphical method of estimating the mass distribution of the body. Locations of the centre of mass and radius
of gyration are shown, as well as the definition of the free body angle y,.

It was necessary to take wing measurements of Emmelina in a different manner, because the
plumes could not be arranged accurately for the severed wing. The wing length was found
directly by using a measuring magnifier, and a print of the wing shape was made from a cine
film frame that showed the wing area maximally projected during flight. The plume fringes
are very dense, so the wing outline was taken along perimeter of the fringe areas.

2.2. Wing mass distribution

The moment of inertia 7 of a wing about its base depends on the distribution of mass along
the wing, and it must be known in order to calculate the inertial torque and power during
flapping flight. It was not possible to determine / for the filmed insects in addition to the other
procedures, and so values were either taken from the study of Sotavalta (1952) or measured
from fresh specimens by the normal strip-weighing technique. A wing was cut from the insect
and weighed, and R was determined directly with the magnifier. The wing was then placed
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on 1 mm graph paper and, beginning at the wing base, 2 mm wide strips were sequentially
cut perpendicular to the wing axis and weighed to + 0.5 pg. This procedure was done as quickly
as possible to minimize mass loss through evaporation. The distance 7; from the wing base to
the centre of mass for each strip was taken as that to the geometrical centre of a strip. The
moment of inertia of the wing was calculated as

I=3%mn, (1)

where m; is the mass of a particular strip.

The sum of the masses of the strips, X m;, was typically 5-10 9, less than the initial wing mass.
For some specimens of Episyrphus and Chrysopa the remainder of the wing was also weighed after
each strip, which revealed that a roughly constant mass was lost with each cut. The mass of
each strip was then corrected in equation (1) to provide a better estimate of /. This value differed
by only 29, from that of a much simpler correction, however: the original values of m; were
used in equation (1), and the moment of inertia was multiplied by the ratio of initial wing mass
to X m;. This latter correction is sufficiently accurate, and has been applied to all values of /
determined by strip-weighing.

The moment of inertia for Manduca wings was found by a compound pendulum technique,
which proved much easier than the other method and virtually eliminated problems of mass
loss. A forewing was cut from an anaesthetized insect, and its mass and length were measured.
A fine entomological pin was then stuck through the wing base such that the plane of the wing
was perpendicular to the pin. The pin was rested on two parallel horizontal rods; on one of
the rods a fine thread weighted at one end provided a vertical reference. The wing was
photographed in this position, and then gently tapped so that it oscillated as a pendulum and
cyclically interrupted a light beam falling on a photodiode. The period of oscillation 7" was
measured over about 20 cycles using a storage oscilloscope connected to the photodiode signal.
The pin was then stuck through the wing near the trailing edge at about iR, replaced on
the two rods, and a photograph was taken again. The centre of mass for the wing was easily
located from the photographs, and the distance from it to the wing base was measured. The
procedure was then repeated on the hindwing.

The moment of inertia for any undamped compound pendulum oscillating about a given
axis can be derived as

I=rmgT?/4n?, (2)

where m is the mass, 7 is the distance from that axis to the centre of mass, g is gravitational
acceleration and 7 is the period. This procedure may be used to determine / for any arbitrary
body when damping is small and when the pin makes a negligible contribution to the total
moment of inertia. It proved very satisfactory for Manduca wings, but for smaller insects the
damping was too large.

2.3. Body morphology

The length and mass distribution of the insect bodies were determined and used to derive
morphological parameters for the body. The manner in which some flight characteristics depend
on body morphology is discussed in §4.2.1., and the parameter estimates need not be very
accurate for this purpose. A graphical method based on the flight films was used to determine
the mass distribution of the body for all insects except Manduca.

For each insect, two cine frames were selected that showed lateral and dorsoventral views
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of the body. The body length L was measured as a proportion L of the wing length in the
film sequence. Prints were made of these two frames at about x 13 magnification. A
longitudinal body axis was drawn on the lateral view, approximately cutting the body into
dorsal and ventral halves. The body was divided into = strips (typically 20) perpendicular to
this axis, and corresponding divisions were drawn on the other view. Figure 24 shows the
procedure and the coordinate system employed. The body outline was chosen to include the
coxa, but the more distal leg segments and the wings were ignored because their mass
contribution could not be treated by this technique. The neglected mass is relatively small,
however, and should not significantly affect the parameters. A uniform mass density was
assumed for the body, and the cross-section was taken as elliptical. The characteristics of each
section i of the body are its thickness dx;, distance from the anterior end x;, and widths a;
and b;; all dimensions are expressed as a fraction of the body length on the appropriate print.
The mass of each elliptical section is proportional to its volume, ina, b; dx;.

The position of the forewing base axis was located on the lateral view. The moment of inertia
of the body 1}, was taken about this axis, and thus applies to pitching movements of the insect.
The body parameters of interest and their calculation from the estimated mass distribution are
derived in §3.2.

The compound pendulum technique was used to determine these parameters for Manduca
specimens. They were heavily anaesthetized for the procedure, and the wings were removed.
The pin was located first through the wing bases, and then through the third abdominal
segment near the dorsal surface.

3. DEFINITIONS AND RESULTS

Non-dimensional forms of parameters, denoted by a circumflex accent, or ‘hat’, are used
extensively in this comparative study. I'tis thus necessary to present only two gross morphological
measurements in absolute units: the total mass m, and the wing length R.

Table 1 lists the insects studied and their values of the morphological parameters. An
identification code ID is assigned to each specimen for later reference. The forewings and
hindwings of the lacewing Chrysopa beat out of phase during flight, and so are treated separately
in the table. The elytra of the ladybird Coccinella do not contribute significantly to the
aerodynamics of hovering, and wing parameters are given for the membranous hindwings only.
For the remaining insects either the forewings and hindwings are coupled together or the
hindwings are not effective aerodynamically: the wing parameters then refer to the single
functional pair of wings.

The wing mass my, includes right and left wings, and is expressed as a fraction 7, of the
total mass. The wing loading equals the weight mg divided by the total sustaining wing area.
This is the mean pressure exerted on the air by the wings during hovering and, therefore, is
denoted by py,. .

Weis-Fogh’s notes on the nemopterid Pterocroce were incomplete, and its mass has been
estimated from the other neuropteran, Chrysopa. Fortunately the body shapes are similar (§4.2.1.
and table 2), and so the mass was estimated by using the mean value of m divided by the cube
of the body length from five specimens of Chrysopa. The wing loading of Pterocroce relies on this
mass estimate, and both values are enclosed in square brackets in table 1.
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3.1. Moment parameters of the wings

Most of the remaining parameters in table 1 are aptly described as moment parameters. The
basic quantities of area, mass and virtual mass may be considered as variables defined over the
wing length.The moments of these quantities about the wing base may then be used as
parameters of the variable distribution along the wing, which is analogous to the characterization
of distribution functions in probability theory by the moments of the distribution. As in that
application, functions of these parameters are often of more interest than the distribution itself.

3.1.1. Wing area

Consider first the strip of wing area d§ located at a distance r form the wing base and equal
to ¢dr. The total area § of the wing pair is given by

R
S=2-[ cdr, (3)
0

but may be expressed more conveniently by the non-dimensional aspect ratio A&R:
AR = 4R%/S. (4)

The mean chord ¢ of the wings is equal to the area divided by the span, §/2R, and is used
to define a normalized chord ¢ as

é=cf/c=2Rc/S =L1ARc/R. (5)

It will also prove useful to introduce a non-dimensional radius  equal to r/R.
The kth moment of wing area S, is defined by

S,c=2jRnkdr=Skaffkdf. (6)
0 0

For a given wing length and area, the moments of area depend only on the distribution of
the normalized chord along the wing: the shape of the wing. The aspect ratio may then be
interpreted as a scaling factor for the wing shape. Non-dimensional moments are obtained by
dividing S), by SR¥, and the kth root may be taken to derive a non-dimensional radius of the
kth moment of wing area:

7E(S) = S,/ SR* = f 2% df. (7)

That is, if all the wing area were located at a distance 7, (S) from the wing base, the kth moment
of area would then equal Si. The values of #,(S) are characteristic of the wing shape, and may
be used to calculate S, directly.

Weis-Fogh (1973) showéd that the mean lift force in the quasi-steady analysis is proportional
to the second moment of wing area, and that the mean profile power is proportional to the
third moment. Values of 7(S) are therefore presented in table 1 for k£ equal to 1, 2 and 3,
together with the aspect ratio. Thisset of parameters is preferred to the shape factors of Weis-Fogh
(1973) because a similar set proves useful for the mass and virtual mass of the wings.
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3.1.2. Wing mass

The mass per unit length of the wing m’ is used to define a similar moment set,

R 1
my, = 2J\ m'r*dr = me’CJ ' e df, (8)

0 0
where the normalized mass per unit length 7’ equals 2m’R/m,,. The wing mass m,, is equal

to my, when £ is zero. The radius for the £th moment of wing mass is given by

& (m) = my,/my, R* = r ' 7% df, (9)
0
and again depends only on the normalized distribution of the variable considered.

The first moment of mass is proportional to the resultant inertial force acting on the wings
in flapping flight. The resultant force on each wing acts through its centre of mass, which is
located at 7,(m). The second moment of mass is the moment of inertia of the wing pair I,
equal to twice the value of I in equation (1), and is proportional to the inertial torque of the
flapping wings. The radius of gyration of I, is equal to #,(m), and may be calculated from

published data as
fo(m) = (Ly/my R?)L. (10)

The compound pendulum technique is especially convenient for determining these para-
meters since f;(m) is found directly, and #,(m) is readily calculated from equations (2)
and (10).

Table 1 presents mean values of #,(m) and #,(m) determined from other specimens of each
species, since time limitations prevented measurement of the wing mass distribution for insects
that were filmed. The original source of data is indicated by the reference, with the number
of samples enclosed in parentheses. Coefficients of variation, equal to the sample standard
deviation expressed as a percentage of the mean, are given in parentheses below 7, (m) and £,(m) ;
these coefficients have been adjusted for small sample size according to Sokal & Braumann
(1980). When data from Sotavalta (1952) were used, #,(m) was estimated from f,(m) by using
equation (26) of §4.2.2(a). Estimated values are indicated by square brackets: the radii of
wing mass for Tipula obsoleta are taken from means of 7. paludosa; a value of 0.40 for 7,(m) is
assumed for Coccinella, based on values of 0.41 for the cockchafer Melolontha vulgaris and 0.39
for a longhorn beetle Cerambycidae (Sotavalta 1952).

Although it is very convenient, the non-dimensional wing mass r,, is not a very ‘clean’
parameter. The absolute wing mass is proportional to the product of wing area and the mean
wing thickness, and is thus affected by variations in two parameters already used, R and AR.
When my, is divided by the mass m, which has a large variance, the resulting parameter is
sensitive to too many factors. A more independent measure of the wing mass would be the mean
wing thickness, expressed as a fraction £ of the wing length and defined by

P M _ my R

h= pwSR  4p,R¥ (11)
where the mass density of the wing p,, can be assigned the value for solid cuticle, 1200 kg m~3
(Jensen & Weis-Fogh 1962 ; Wainwright et al. 1976). Values of h are given in table 1. Estimated
values were necessary for Tipula obsoleta, Eristalis (DFO1), and Pterocroce; they were taken from

Tipula paludosa, Eristalis (DF02) and Chrysopa, respectively, and were also used to estimate .
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3.1.3. Wing virtual mass

Osborne (1951) suggested that acceleration forces could play a significant role in the
aerodynamics of flapping flight. When a wing, or any body immersed in a fluid, is accelerated,
it must set the surrounding air in motion. The inertia of the wing is increased by the mass of
air that is accelerated, and so there is an apparent increase in the wing mass: the virtual mass,
or added mass. Inviscid flow theory shows that the virtual mass of a thin wing accelerated
normal to its chord is equal to the mass of air in an imaginary circular cylinder around the
wing with the chord as its diameter. A wing section thus has a virtual mass v" per unit span

equal to
v = pnct, (12)

where p is the mass density of air. The total virtual mass of the wing pair is given by

R 1 2, mR3 1
v=2j v’dr=%anZRj pdi =L jazdf. (13)
0 0 &R,
The proportionality constants in the expanded forms are equal to the virtual mass of a wing
pair with span 2R and chord ¢, the mean chord. Dividing v by this quantity, we derive an
appropriate non-dimensional form

vAR2 1"2

The moments of virtual mass are defined by

R k1
v = 2[ v'rkdr = iJ‘ &% df, (15)
0 7 Jo
and the corresponding radii are
Uy IJI ka
=k __ ) 1
(o) = =g ), @ (16)

Values of 4, ,(v) and #,(v) are presented in table 1; the mechanical interpretations of the
moments and radii of virtual mass are the same as for the wing mass itself.

Values of two more integrals will be required for the aerodynamic analysis in paper VI, and
are given in table 1. They are moment parameters of the wing shape as well, but a direct physical
interpretation cannot be assigned to them.

Some of the hovering animals discussed in paper I are also included in table 1 for comparison.
The moment parameters for wing area and virtual mass were calculated from drawings of the
wing outline in the references. The wing mass distribution, if given, was used to calculate f,(m)
and f,(m). The wing mass for Ficedula is taken from Magnan (1922).

3.2. Body parameters

The lateral and dorsoventral views of the body required for the graphical technique could
not be obtained for some filmed insects. Mean values of the derived body parameters are
therefore presented in table 2, together with the coefficients of variation and the number of
samples 7.

The body length L is expressed as a fraction L of the wing length. All other body parameters
with linear dimensions are given as a fraction of the body length.

Some mechanical analyses of flight require an estimate of the aerodynamic forces on the body.
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However, the flow conditions near the body cannot be described accurately because of the
complexity of the induced velocity field. The aerodynamic force estimate will be a crude
approximation at best, and it will be sufficient to consider the body as a circular cylinder of
length L. By equating the mass of the cylinder with that of the insect, 2 mean diameter d as
a fraction of body length can be calculated by

d = (4m/npy, L), (17)

where p, is the mean mass density of the body. The mean body density should lie between
1200 kg m™2 for solid cuticle and a value closer to 1000 kg m™ for soft tissues. A mean density

TABLE 2. MEAN VALUES OF THE BODY PARAMETERS FOR INSECTS IN THIS STUDY

(The number of samples z is presented, and the coefficient of variation expressed as a percentage is given in
parentheses after each mean value. Estimated values are enclosed in square brackets.)

. . 4 _Xo_
species n A d [ A ly deg
Coleoptera
Coccinella 5 0.73 (6.7) 0.26 (9.6) — — — —
Diptera
Tipula obsoleta 2 0.85(2.6) 0.11 (14.6) 0.45 (1.8) 0.21 (0) 0.34 (2.4) 70 (6.9)
T. paludosa 3 1.04 (1.9) 0.10 (1.3) 0.44 (3.8) 0.23 (4.6) 0.37 (3.4) 70 (1.8)
Episyrphus 4 1.10 (4.4) 0.16 (11.7) 0.41 (4.8) 0.14 (14) 0.29 (4.4) 53 (14)
Eristalis 2 1.22 (4.4) 0.20 (17) 0.48 (1.7) 0.12 (0) 0.26 (0) 50 (3.2)
Hymenoptera
Apis 4 1.62 (4.9) 0.17 (7.0) 0.46 (1.4) 0.26 (9.1) 0.36 (3.8) 53 (2.9)
Psithyrus 4 1.47 (3.3) 0.18 (16) 0.47 (3.7) 0.24 (16) 0.37 (9.4) 52 (3.8)
and Bombus
Lepidoptera
Emmelina 1 0.78 0.12 0.41 0.25 0.36 76
Manduca 3 0.81(3.8) 0.16 (9.5) 0.51 (2.5) 0.27 (12) 0.38 (7.3) 73 (3.1)
Neuroptera
Prterocroce 1 0.77 [0.10] 0.42 0.17 0.32 62
Chrysopa 2 068 (2.4) 0.12 (0.7) 0.43 (1.9) 0.22 (11) 0.35 (2.4) 84 (2.8)

of 1100 kg m™3 has therefore been assumed for use in equation (17). This value is also consistent
with the results of Lowndes (1942): he measured the density of some aquatic crustaceans
broadly similar in morphology to the insects (Mysidacea, Amphipoda and natantian
decapods), and found a mean value of 1100.

The moment of inertia and the location of the centre of mass must be known in order to
calculate the response of the body to the forces and moments generated by the wings during
flight. Under the assumptions of the graphical technique, the centre of mass must lie on the
longitudinal body axis (figure 24). The distance from the centre of the anterior end is
given by I, where
Y a; b; x;dx

[= : 18
z a; bi dxi ( )

The distance from the forewing base axis to the centre of mass is the radius for the first moment

of body mass about that axis, and is therefore denoted by /;. It was measured on the lateral-view

print after the centre of mass was located, or determined directly in the compound pendulum
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technique. The radius of gyration [, for the moment of inertia about the wing base axis is
given by
i3 = I,/mL2 (19)

To simplify calculations the parallel axis theorem was used to derive

n _ Zagbxdy

= 2_J2
2 zai bidxi +ll l s (2())

where the first term on the right side is the non-dimensional moment of inertia about the y
axis. The compound pendulum method may be used to calculate [, directly from equations
(2) and (10).

The angle between the longitudinal body axis and the horizontal is defined as the body angle
x in paper III. If the flapping wings generate no mean pitching moments, then the body will
assume an angle where the line passing through the wing base and the centre of mass is vertical
(figure 25). This free body angle is called x,, and may be measured directly in the pendulum
technique.

4. DiscussioN

This collection of morphological data is primarily intended for use in the calculations of paper
VI, where the biomechanical significance of the parameters will become clear. Because of the
small sample sizes, the collection is not suitable for a detailed morphometric analysis of
intraspecific variance. Nor should it be amenable to an interspecific allometric analysis, as is
commonly done on morphological parameters for flying animals (Osborne 1951; Sotavalta
1952; Greenewalt 1962, 1975; Warham 1977; U. M. Norberg 1981). Such allometric
studies require a large range of values for the independent variable before general correlations
emerge from the interspecific variations. ‘ The averaging involved in treating so many different
species as a single group will indicate broad trends, but tends to conceal the aerodynamic
idiosyncracies of individual species’ (Greenewalt 1975). These ‘idiosyncracies’ are indeed
significant: the scatter of points about the general relation on allometric graphs is large,
especially when one realizes that it is visually reduced by the logarithmic coordinates. The
nature of the morphological parameters derived in this paper is such that they can be divided
into two distinct groups: gross parameters and shape parameters. Over the limited size range of
insects in this study, the variation of gross parameters between species is much greater than
any systematic variation due to an allometric relation, and no interspecific correlations can be
found. The new shape parameters provide quite a surprise, however; intraspecific variances
are very low, and extremely strong interspecific allometric relations are found over a small
range of parameter values.

4.1. Gross parameters

The gross parameters of a flying insect provide a very crude, first-order description of its
morphology: a body of given length and mass attached to wings of given length, area and mass.
To draw a rough sketch of such an insect we could select the wing length R as a reference
length, and draw simple rectangular wings with an aspect ratio appropriate to the wing area.
The mean wing thickness, representing the wing mass, could also be sketched on a scale relative
to R. The body could be portrayed as a circular cylinder whose length is a given fraction of
R, with a diameter corresponding to the body mass.
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30 C.P. ELLINGTON

Even with this crude sketch the morphological diversity of the insects is readily apparent.
‘The mean diameter of the body is typically 0.16 of the body length, but varies between 0.10
and 0.26. The body length is equal to the wing length on average, ranging from 0.7 to 1.6
times that dimension. The ratio of wing span to mean chord is given by the aspect ratio, which
varies from 5.7 to 11.6, with an average value of 8.3. Finally, the mean wing thickness is typically
about 0.057 9, of the wing length, ranging from 0.015 to 0.106 %,. No one insect closely matches
this ‘average’ one, which may not be surprising. The parameters have characteristic values
for each species, and show no general interspecific correlations; the absence of an ‘average’
species is, in fact, consistent with the lack of correlation between parameters. The mean values

(a) I TRy
T IILEEE T
il =1 B!

Ficure 3. Forewing of the green lacewing Chrysopa carnea (a) and the wing of a drone-fly Eristalis tenax (). Although
venation is much more extensive, the mass per unit area of the ‘primitive’ Chrysopa wing is less than that of
the more ‘advanced’ Eristalis wing.

of the gross morphological parameters must be taken as independent variables for each species,
within any broad limits imposed by scaling laws. It would therefore be incautious to use
allometric relations to predict morphological parameters for detailed aerodynamic calculations
for specific animals, as some authors have done. The potential error arising from a single
prediction is serious enough, and the errors will compound alarmingly with predictions of
several uncorrelated parameters.

The mean wing thickness provides an interesting example of an uncorrelated parameter.
Greenewalt (1962) found that the mean thickness increases slightly faster than the wing length
over a large size range of birds and insects. This allometric relation is not evident over the small
size range of insects considered here, and a predicted value would be quite useless in the face
of the observed seven-fold variation in . This variation shows no significant correlation with
the other gross parameters, but it does seem related to the details of the wing construction.
The rich venation of the net-like wings of Chrysopa and Aeschna is generally considered to be
a ‘primitive’ evolutionary trait. A Chrysopa forewing is shown in figure 3 with an Eristalis wing
for comparison. Although Eristalis has much fewer veins, which is characteristic of the ‘higher’
insects, the veins are more robust than those of Chrysopa. The wing membrane of Eristalis is thicker
as well, resulting in a substantially stiffer wing than in Chrysopa. The advanced insects pay a
penalty for this wing design, however: the mean wing thickness £ is typically 0.02 9/, for Aeschna
and Chrysopa, but is 0.08 %, for the advanced insects. Thus the wing mass for a given area is
about four times higher for Eristalis and the others, and the inertial torque and power
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requirement for flapping flight will be increased by the same proportion. The crane-flies have
the lowest value of £ for the advanced insects, and may represent an intermediate stage of wing
design. They belong to the dipteran suborder Nematocera, which includes the most primitive
of the flies. Venation is fairly complete in the Nematocera and, like £ for the tipulids, lies between
the more advanced and primitive forms.

Before leaving this discussion of gross morphological parameters, the virtual wing mass should
be mentioned. This apparent increase in the wing mass is only found during the accelerations
of unsteady wing motions; thus it is rarely encountered in conventional aerodynamics, although
it is treated in theories of wing flutter. Wing accelerations are certainly large during flapping
flight, and significant forces and torques may then arise from the virtual mass. Because it is
mechanically analogous to the wing mass, the virtual mass should be considered as another
gross parameter. Table 1 shows that it is typically 119, greater than the mass of a cylinder
of air with diameter equal to the mean chord and length equal to the wing span: the ratio
between the actual value and this reference virtual mass is given by 7.

The virtual mass v has been derived for accelerations of the wings normal to their chords.
The strongest accelerations and decelerations in hovering flight occur at either end of the
wingbeat, and the chord is nearly perpendicular to the wing motion at these times (paper III).
For a first approximation, the inertial effects of the virtual mass can then be calculated based
on the assumption that the chord is normal to the wing motion. The ratio of the virtual wing
mass to the actual wing mass, v/m,, then indicates the relative mechanical importance of these
two quantities. The virtual mass is easily calculated from equation (14), with a value of
1.23 kg m~3 for the density of air at 15 °C and 1 atm (ca. 10° Pa). The ratio v/m,, is about
0.3 for Coccinella and the Diptera, 0.4 for Manduca and the Hymenoptera, 0.8 for Chrysopa and
the forewing of Aeschna, and 1.3 for the hindwing of Aeschna. The ratios are surprisingly high in
general, and demonstrate that the mass of air accelerated by the wings can be fully comparable
with the wing mass itself for the light wings of primitive insects like Chrysopa and Aeschna.

4.2. Shape parameters

The mechanics of flight depend not only on the magnitude of gross morphological quantities,
but also on their distributions. It will be shown in paper VI that this dependence often hinges
on a set of moments about some axis. Thus the mechanical response of the body mass to the
cyclic aerodynamic forces is determined by the position of the centre of mass relative to the
wing base axis, which is given by the first moment of body mass about that axis, and the moment
of inertia of the body, which is equal to the second moment of mass. Similarly, the mechanical
effects of wing area, mass and virtual mass depend on their moments about the wing base.

Although these moments have been derived for the biomechanical analysis of hovering flight,
they also prove to be very interesting parameters of morphological skape. For example, the first
three moments of a distribution determine its mean, variance and skewness, which are overall
measures of the shape of the distribution. Thus the moments of wing area indicate how the
area is distributed along the ‘wing: the shape of the wing planform. Non-dimensional moments
normalize the distributions, and their radii provide parameters of shape that can be compared
for different animals. These parameters offer a second-order description of an animal’s
morphology, refining the crude sketch obtained from the gross parameters in §4.1.
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4.2.1. Body shape

It must be remembered that the parameters [,1, and f2 are functions of the mass distribution

of the body excluding the leg mass distal to the coxa. When observed under filming conditions,
the leg positions vary during some manoeuvres and may shift the centre of mass enough to be
beneficial. Because of this, and the assumption of an elliptical body section in the graphical

technique, the values of these parameters in table 2 may not be very accurate.

Coleoptera Neuroptera
Coccinella <o Pterocroce o
Diptera Chrysopa (FW) o
T. obsoleta A ‘Chrysopa (HW) ¢
T. paludosa A Odonata
Episyrphus v Aeschna (FW) o
Eristalis v Aeschna (HW) @
Hymenoptera birds
Apis o Amazilia *
Psithyrus ° Ficedula +
and Bombus bats
Lepidoptera Plecotus x
Emmelina u]
Manduca |

Ficure 4. Symbols used to identify data from each species, or group, in the graphs of figures 5-9.
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Ficurk 5. Radius of gyration /, for the insect body about the wing base axis is plotted against distance il from
that axis to the centre of mass. The solid line shows the relation obtained by least-squares linear regression.

The location of the centre of mass [ relative to the body length generally lies at the junction
between thorax and abdomen, which agrees with the measurements of Magnan (1934) and
the figures of Demoll (1918). The centre of mass is positioned just anterior to this junction in
Eristalis and Pterocroce, and somewhat posterior in Emmelina, Manduca and the tipulids.

Although correlations between [ and either [, or [, are very weak, figure 5 shows a correlation
between /; and [,. The symbols on this graph are identified in figure 4, and they are also used
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in figures 6-9. The radius of gyration /, cannot equal zero when the centre of mass lies on the
wing base axis ([, = 0) unless the body is a theoretical point mass, and so a simple allometric
relation that passes through the origin cannot be justified for the parameters. This would not
be the case, however, if the radius of gyration and the position of the centre of mass were
measured with respect to the anterior y axis of the body. As the distance between the centre
of mass and the y axis decreases to zero, the mass must concentrate on that axis and the radius
of gyration would necessarily approach zero, making an allometric relation quite appropriate.
These parameters must be measured with respect to the wing base axis in order to investigate
the mechanical response of the body, though, and the wing base axis is just an arbitrary point
in the body mass distribution. A linear regression has therefore been applied to the data:

[, =0.182+0.736,, (21)

which is shown by the solid line in figure 5.

For a given body size (mass and length), the mechanical responses of the body are dependent
only on [, and iz. By the above result this can be reduced to a dependence on the distance
[, from the wing base to the centre of mass, and the mechanical responses may them be changed
by a morphological shift in position of the wing bases or the centre of mass. When this distance
[, is small, the pitching moments required of the wings to alter the body angle y are reduced.
The moment of inertia /,,, which is proportional to &, is also decreased when /; is small and
results in greater angular accelerations for given pitching moments. The reduction in I,
produced by small values of /, is certainly significant: when Eristalis and Manduca, which have
the lowest and highest values respectively, are compared, the normalized moment of inertia
is decreased by a factor of 2.5. Thus the body is much more responsive in the pitching plane
when the wing base is closer to the centre of mass. The response of the body angle is an important
determinant of the manoeuvrability of insects because the angle between the body axis and
the stroke plane is, for anatomical reasons, roughly constant during flight. As will be discussed
in paper III, the stroke plane and body tilt together in a nose-down direction as forward flight
speed increases, and tilt nose-up in backward flight. By tilting the stroke plane the insects alter
the direction of the mean aerodynamic force produced by the flapping wings, controlling the
amount of horizontal thrust and hence their flight speed in a manner analogous to helicopters.
Small values of [, enable the body angle and therefore the stroke plane angle to respond quickly
to desired changes in speed and direction, increasing manoeuvrability : conversely, larger values
of /; should be associated with more sluggish fliers.

The values of /, in table 2 are all similar, except for the notably low values of the hover-fly
Episyrphus, the drone-fly Eristalis and the nemopterid Pterocroce. The extreme manoeuvrability
of Episyrphus and Eristalis is readily apparent to the most casual observer in the garden, and
they have the lowest values of [;. They are also capable of hovering with either an inclined
or a horizontal stroke plane (paper I1I), and this versatility is supported by the reduced pitching
moments required to tilt thg body angle along with the stroke plane angle. I have never observed
a live Pterocroce flying, but Weis-Fogh’s films reveal it to be a very agile flier within the
confinement of a flight cage. Presumably it behaves like other Nemopteridae, flying at dusk and
‘dancing’ up and down rather like mayflies. The dragonflies are also well known for their
manoeuvrability, and Magnan (1934) reports that the centre of mass lies between the forewings
and hindwings in Aeschna parthenope, a design that should increase the body responsiveness very
effectively.

3 Vol. 305. B
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The free body angle y, is also determined by the relative positions of the wing base axis and
the centre of mass, and may represent another morphological adaptation to flight style. This
angle is large in the crane-flies, the lacewing Chrysopa, and the plume moth Emmelina, which
are characteristically slow fliers. Since the body angle y is typically close to this free angle during
flight, these insects nearly adopt the correct flight orientation automatically, and pendulum
stability of the body will help to maintain this position. The free angle of the hawk moth
Manduca is also large, and this insect is a very proficient slow flier. Manduca is certainly capable
of fast flight, however, and would require a large nose-down pitching moment from the wings
to maintain the associated body angle. The Hymenoptera, Episyrphus and Eristalis seem to fly
over the entire range of speeds with equal ease, and value of y, near 50° for them may represent
a compromise in design.

0.7 I |
P
s
06— v 'A —
2 A
I
e B,o"c'

0.4 | 1
0.3 04 05 06

71(S)

Ficure 6. Radii of the second and third moments of wing area, £,(S) and 74(S), plotted against position of the centroid
f1(S). Values calculated from the approximation of Oehme & Kitzler (1975) for the wing chord distribution
of various birds are indicated by a solid diamond. The curves show the allometric relations between these
parameters.

4.2.2. Wing shape

The most striking feature of the radii of the non-dimensional moments of wing area, mass
and virtual mass is the constancy of values for each species in table 1. This is not so apparent
for the radii of wing mass, where an average intraspecific coefficient of variation of 4 %, is largely
a result of experimental inaccuracies in the strip-weighing technique. The radii of wing area
and virtual mass, however, show an impressive intraspecific variation of only 19, in general:
slightly less for the radii of wing area, slightly more for virtual mass. This low variation may
be due in part to the global nature of the moment parameters, which makes them fairly
insensitive to small local deviations in the distributions. For example, small random deviations
in the chord along the length of the wing should have a negligible effect on the moments of
area and their radii, but a systematic change of the chord distribution must be reflected in the
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moments. If the chord near the wing tip is increased, then the position of the centroid of area
for that wing, given by #,(S), will shift towards the tip, and all of the moment radii for wing
area and virtual mass will increase as well. Thus the differences between species, although small,
probably indicate a systematic alteration of the general distributions.

0.7 l I
A/-Oﬁ
) o

0.5 / —

) A .

0.3 0.4 0.5 0.6
f1(v)
Ficure 7. Radius of gyration of the virtual wing mass #,(v) is plotted against its centroid #,(v). The value calculated

from the approximation of Oehme & Kitzler (1975) for bird wings is indicated by a solid diamond. The
allometric relation is shown by the curve.

(a) Laws of shape. As might be anticipated from the body moment parameters, very strong
correlations are found between the radii for wing area, for virtual mass, and those for wing
mass. In figure 6 the radii of the second and third moments of wing area, £,(S) and 7,(S), are
plotted against the position of the centroid of area for a wing, #,(S). Mean values for all groups
in table 1 are shown on this graph. The relation between the radius of the second moment of
virtual mass f,(v) and its centroid #,(v) is given in figure 7. Similarly, the first and second
radii for wing mass are plotted in figure 8. All of the figures show very tight correlations, which
is all the more remarkable because the data points represent two birds and a bat as well as
the range of insects.

In contrast to the shape parameters of the body, an allometric relation is quite justified for
the radii of the wing moment parameters because these moments are taken about the origin
of the distributions, the wing base. In the limit as any quantity distributed along the wing
becomes concentrated at the wing base, all of the moments of that quantity and their respective
radii will approach zero. We can therefore assume that two radii, 7, and #,, can be related
by an allometric power function

fon = off, (22)

where the coefficients & and f are found by linear regression of the radii in the logarithmic
form of equation (22). The most attractive procedure is to relate all of the higher radii of a

3-2
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quantity to f,, so that the higher moments can simply be expressed as functions of the position
of the centroid. The following allometric expressions are thus obtained:

f2(S) = 0.929 [#,(5)]°72, (23)
75(S) = 0.900 [£,(8)]0%1, (24)
fo(v) = 0.929 [£,(v)]*", (25)
fo(m) = 1.023 [£,(m)]0817. (26)
0.6 T '
Yo
<o
0.5p=— A/ -
v
§ omitted\. v/
0.4 -
%
/6
0.3 ] |
0.2 0.3 04 0.5
f1(m)

Ficure 8. Radius of gyration of the wing mass f,(m) is plotted against position of the centre of mass f, (m). As explained
in the text, data for Manduca were omitted from the allometric regression, which is shown by the curve.

These relations are drawn on figures 6-8. The regression for the wing mass radii does not include
the data for Manduca, which were measured by the compound pendulum technique instead
of strip-weighing. The radius parameters are so exact for a species that differences in
experimental technique may well be reflected in their values. Indeed, the Manduca data lie
outside the 959, confidence limits of the regression for data obtained by strip-weighing.

Allometricrelationsshould alsoexistbetween theradii of different quantitiesdistributed along the
wings. If all of the wing area were concentrated at the wing base, then the wing mass and virtual
mass would be as well. This offers the interesting prospect that all of the wing radius parameters
could be estimated simply from the centroid of area for the wing. Experimentally, this centroid
is easily determined by finding the balance point of the wing planform cut out of an enlarged
photograph; the aspect ratio is readily measured as well from the mass of the cut-out and
the paper density. The allometric relations between the different radii are

fi(v) = 1.47 [#,(S)]*5, (27)
fo(v) = 1.25 [F,(S)]*19, (28)
fi(m) = 1.37 [#,(S)]*82, (29)
fo(m) = 1.32 [£1(S)]+39, (30)
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where Manduca is again excluded from the mass regression. The centroids of mass and virtual
mass are plotted against that of wing area in figure 9 to indicate how well the radii of the
different quantities correlate. In general, all of the radii for the moments of area and virtual
mass can be predicted from #,(S) to an accuracy of about 1-2 9, which is the same magnitude
as the mean intraspecific variations. Unfortunately, the allometric relations between the radii
of wing mass and 7, (S) are not strong enough to be of much predictive value. A better procedure
would be to determine the position of the centre of mass #,(m) by balancing the wing on a
knife edge, and then to estimate 7y(m) from 7,(m) by using equation (26).

0.6
I 5 1
r'y
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Ficure 9. Positions of the centroids of virtual mass and mass, f,(v) and f,(m), are plotted against that for
wing area f,(S). Allometric relations are indicated by the curve.

It is most improbable that the definite relations between the non-dimensional moments of
wing area, mass and virtual mass can be explained by a biological phenomenon common to
insects, birds and bats. Aerodynamic and mechanical considerations are much more likely to
provide an understanding of the relations, but this approach has been fruitless so far. I am still
working on the problem, but we are left at present with precise correlations of experimental
data with no basis of understanding. It thus seems appropriate that the allometric relations
between the radii should be called laws of wing shape: rules that are obeyed even if the reasons
for doing so are unknown. These laws are mainly derived from a diverse collection of insects,
but two birds and a bat obgey the same relations. In fact, many other birds also fit the laws.
Oehme & Kitzler (1975) measured the wing chord distribution for 14 bird species differing
in size and habits, and found that it could be approximated in general by

=% for 0<7<} ¢=%(F-7) for {<7F<I, (31)

where their notation has been made consistent with mine. The radius parameters for wing area
and virtual mass are readily calculated from this approximation, and are plotted in figures 6
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and 7. An extremely good fit to the other data is evident, so it seems likely that the laws of
shape are more generally valid for birds as well as insects.

(b) Weis-Fogh’s approximations. Weis-Fogh (1973) first emphasized the mechanical importance
of the moments of wing area, and that they depend on the shape of the wing. Although less
general, his ‘shape factors’ are similar to the radius parameters defined here, which form a
consistent set applicable to the moments of other quantities besides area. He approximated
nearly all wings by a semi-ellipse for his ‘quick estimates’, thus assigning a constant value of
0.42 to #,(S). This is the lowest observed value and substantially below the mean of 0.49; his
moments of area are underestimated in most cases, therefore, and his aerodynamic calculations
must reflect this error. Similarly, his approximation for the mass distribution of the wings sets
fo(m) equal to a constant value of 0.41, which is close to the mean of the observed range
(0.33-0.55). The moment of inertia is proportional to f3(m), though, which equals 0.17 for his
approximation and 0.11-0.30 for the observed range. The distributions of quantities along the
wing are simply too varied for such rigid approximations to be accurate. This is not meant to
detract from Weis-Fogh’s pioneering study, however: the approximations were quite suitable
for an initial investigation.

(¢) Analytical representations of wing shape. The moment parameters of the wings offer an overall,
or global description of their shape. In many applications a more detailed description of shape
might be desirable, such as an analytical function for the normalized chord ¢ in terms of radial
position 7. A general form would have to be assumed for the function, incorporating any constants
necessary for fitting the general form to the specific data. The success of the assumption is judged
by how well the values predicted by the function agree with the observations.

The choice of a suitable function is determined to some extent by the method of fitting
constants. A least-squares regression of the function onto the data is an obvious procedure, and
almost any analytical function could be fitted by this method; in practice, a simple polynomial
or Fourier representation would most likely be selected from the bewildering variety of
functions. An alternative scheme is suggested by distribution theory in statistics, however: fitting
a distribution function by matching its moments to those of the observed data. This is exactly
what is done when data are represented by a normal distribution whose mean and variance
are obtained by equating the first two moments of the normal distribution function to those
of the data. The method of matching moments seems especially appropriate for the wing shapes,
since the moments of data are already required for the biomechanical analysis of flight.

Unlike the normal distribution, which extends from — o0 to + 00, a distribution function
suitable for the description of wing shape should be defined over a /limited interval from 0 to
1. The only standard distribution function for a limited interval is the Beta distribution, one of the
family of Pearson distributions invented precisely for the representation of experimental data
(see Kendall & Stuart 1963). The Beta distribution is defined over the interval of x from 0
to 1, and the distribution function is given by

S=xPTH (1 =%/ B(p, q), (32)

where the Beta function B(p,q) is

B(p,q) = J: xP71(1 —x)2"1dx. (33)
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The distribution is uniquely determined by the two parameters p and ¢, so the first two moments
of the data are sufficient for their estimation. Matching the moments of the Beta distribution
to the wing moments, expressed by their radii, gives p and ¢ as

qg=(1—74) I:%I-:Tﬁ)—l]. (35)

By equating ¢ with f and 7 with x in equation (32), and using the radii of wing area in
equations (34) and (35), I have compared the Beta distribution with the measured wing chords

2 T T T T T T T T
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Ficure 10. Comparison between the non-dimensional chord measured along the wing length (solid line) and the
Beta distribution obtained by matching moments (dashed line), for four insects spanning the observed range
of 7,(S) values: (a) Episyrphus balteatus (HF08), (b) Bombus hortorum (BB04), (c) Chrysopa carnea forewing (LWO1),
(d) Manduca sexta (HMO02).

for all animals in this study. Figure 10 represents four chord distributions spanning the observed
f1(S) values, and the corresponding Beta distributions are shown by dashed lines. The fit ranges
form exceptionally good, as for Episyrphus, to acceptable, as for Manduca. In general, the fit is
quite impressive in view of the variety of wing constructions found in the insects, birds and
bats; values of ¢ predicted by the Beta distribution are typically within 59, of the measured
values, and the goodness of fit does not vary systematically with #,(S). Furthermore, the
distribution can be reduced to a function of only one variable, #,(S), by using the shape law
of equation (23) to estimate 7,(S), and the resulting distributions are not significantly different
from those calculated with the proper values of 7,(S). Thus the Beta distribution provides a
powerful tool for drawing a close approximation to the entire shape of a wing given only its
centroid of area #,(S). Quite unexpectedly, the continuous spectrum of wing shapes can then
be described in detail by a single parameter of shape.

The Beta distribution is unimodal and falls to zero at either end of the interval, and so it
is not a completely suitable description for some wings. Alternatives to it are not obvious, but
I have tried a general purpose polynomial distribution function for the wing shape. If the wing
chord is represented by

{=ayta,f+a,?+ayf, (36)
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the radii of the moments of this distribution are then

) a4 ag as

=i+ k2 T k3 T ke

7E(S) (37)

The coefficients g, to a4 are found by solving the set of simultaneous equations given by k = 0,
1,2,3 in equation (37). In general, the resulting polynomial distributions fit the chord
measurements not quite as well as the Beta distributions, although the fit for more proximal
regions of the wing is marginally improved for some insects.

I thank Mr G. G. Runnalls for photographic assistance, and Mr D. M. Unwin for identifying
the insects. I am grateful to Dr K. E. Machin for many interesting discussions on the baffling
laws of shape, and for a critical reading of the manuscript. Financial support was provided
by the Winston Churchill Foundation.
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